从零开始训练自己的GPT

之前研究LLM的时候,都只是看架构原理,以及MultiAttention的实现代码,但是对于大模型完整的训练过程没有太多仔细的了解。正好放假,就抽了点时间在研究了一下。这次,用网络小说“诛仙”为例,训练一个能写网文的语言模型。

前期准备

首先需要导入一些必要的库,以及设置一些必要的参数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import torch
import torch.nn as nn
from torch.nn import functional as F
import mmap
import random
import pickle
import argparse

device = 'cuda' if torch.cuda.is_available() else 'cpu'

batch_size = 32 # 训练/预测时的Batch样本个数
block_size = 128 # 训练/预测时的每个样本长度
max_iters = 200 # 最大生成字符数
learning_rate = 3e-4
eval_iters = 100
n_embd = 384
n_head = 4
n_layer = 4
dropout = 0.2

准备词表

训练模型的第一步是需要从语料中提取出词表字典。

1
2
3
4
5
6
7
8
9
10
11
12
with open('诛仙.txt', 'r', encoding='gbk',errors='replace') as f:
text = f.read()

chars = sorted(list(set(text)))
vocab_size = len(char) # 词表长度

print(f'共有{vocab_size}个不同的字符')
# 共有3591个不同的字符

print(text[:10])
# 诛仙
# 作者:萧鼎

词典提取完之后,就需要弄一个解码器和编码器。这两者的作用是将字符映射为数字Index,以及将Index反映射为字符。

1
2
3
4
5
6
7
8
9
10
string_to_int = { ch:i for i,ch in enumerate(chars) }
int_to_string = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [string_to_int[c] for c in s]
decode = lambda l: ''.join([int_to_string[i] for i in l])

encode('天地不仁,以万物为刍狗。')
# [808, 732, 47, 130, 3587, 146, 42, 2094, 71, 351, 2111, 32]

decode([808, 732, 47, 130, 3587, 146, 42, 2094, 71, 351, 2111, 32])
# '天地不仁,以万物为刍狗。'

获取批数据

接下来,需要定义一个获取批数据的方法。我们定义了80%的数据作为训练集,20%作为验证集。get_batch方法会随机选择一个index,然后逐层叠加数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
n = int(0.8*len(data))
train_data = data[:n]
val_data = data[n:]

def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y

x, y = get_batch('train')
print('inputs:')
print(x)
print('targets:')
print(y)

打印看一下,这里batch_size是4,这说明一个批次里有四个样本对。输入是一个长度为8的句子,而输出则是从第二个字之后,预测下一个字。

1
2
3
4
5
6
7
8
9
10
inputs:
tensor([[73, 1, 54, 72, 1, 58, 75, 58],
[58, 69, 65, 62, 58, 57, 1, 28],
[56, 58, 72, 72, 11, 0, 0, 3],
[26, 74, 73, 1, 33, 1, 54, 66]], device='cuda:0')
targets:
tensor([[ 1, 54, 72, 1, 58, 75, 58, 71],
[69, 65, 62, 58, 57, 1, 28, 68],
[58, 72, 72, 11, 0, 0, 3, 40],
[74, 73, 1, 33, 1, 54, 66, 1]], device='cuda:0')

评估函数

接下来定义一个评估的函数。当评估时,不需要计算梯度。模型也需要切换到eval模式。随后迭代地取batch样本,计算概率和损失。最后输出损失的均值。

1
2
3
4
5
6
7
8
9
10
11
12
13
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out

构建模型

随后就是最重要的模型部分。这里采用了最通用的多头注意力构成的模型。首先定义一个注意力头。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Head(nn.Module):
""" one head of self-attention """

def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

self.dropout = nn.Dropout(dropout)

def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B,T,C = x.shape
k = self.key(x) # (B,T,hs)
q = self.query(x) # (B,T,hs)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,hs)
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
return out

# [1, 0, 0]
# [1, 0.6, 0]
# [1, 0.6, 0.4]

随后,我们组一个多头注意力模板。

1
2
3
4
5
6
7
8
9
10
11
12
13
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """

def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(head_size * num_heads, n_embd)
self.dropout = nn.Dropout(dropout)

def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, F) -> (B, T, [h1, h1, h1, h1, h2, h2, h2, h2, h3, h3, h3, h3])
out = self.dropout(self.proj(out))
return out

然后是前向传播层。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """

def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)

def forward(self, x):
return self.net(x)

class Block(nn.Module):
""" Transformer block: communication followed by computation """

def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)

def forward(self, x):
y = self.sa(x)
x = self.ln1(x + y)
y = self.ffwd(x)
x = self.ln2(x + y)
return x

class GPTLanguageModel(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)

self.apply(self._init_weights)

def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

def forward(self, index, targets=None):
B, T = index.shape

# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(index) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)

if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)

return logits, loss

def generate(self, index, max_new_tokens):
# index is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
index_cond = index[:, -block_size:]
# get the predictions
logits, loss = self.forward(index_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
index_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
index = torch.cat((index, index_next), dim=1) # (B, T+1)
return index

model = GPTLanguageModel(vocab_size)
# print('loading model parameters...')
# with open('model-01.pkl', 'rb') as f:
# model = pickle.load(f)
# print('loaded successfully!')
m = model.to(device)

训练模型

我们创建一个Optimizer,随后开始训练模型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

for iter in range(max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(f"step: {iter}, train loss: {losses['train']:.3f}, val loss: {losses['val']:.3f}")

# sample a batch of data
xb, yb = get_batch('train')

# evaluate the loss
logits, loss = model.forward(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())

with open('model-01.pkl', 'wb') as f:
pickle.dump(model, f)
print('model saved')

测试模型

训练完成后就可以测试模型了。

1
2
3
4
prompt = 'Hello! Can you see me?'
context = torch.tensor(encode(prompt), dtype=torch.long, device=device)
generated_chars = decode(m.generate(context.unsqueeze(0), max_new_tokens=100)[0].tolist())
print(generated_chars)

2024/2/17 于连江